Helical polymers for biological and medical applications
Helices are the most prevalent secondary structure in biomolecules and play vital roles in their activity. Chemists have been fascinated with mimicking this molecular conformation with synthetic materials. Research has now been devoted to the synthesis and characterization of helical materials, and to understand the design principles behind this molecular architecture. In parallel, work has been done to develop synthetic polymers for biological and medical applications. We now have access to materials with controlled size, molecular conformation, multivalency or functionality. As a result, synthetic polymers are being investigated in areas such as drug and gene delivery, tissue engineering, imaging and sensing, or as polymer therapeutics. Here, we provide a critical view of where these two fields, helical polymers and polymers for biological and medical applications, overlap. We have selected relevant polymer families and examples to illustrate the range of applications that can be targeted and the impact of the helical conformation on the performance. For each family of polymers, we briefly describe how they can be prepared, what helical conformations are observed and what parameters control helicity. We close this Review with an outlook of the challenges ahead, including the characterization of helicity through the process and the identification of biocompatibility.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
133,45 € per year
only 11,12 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout









Assembly of short amphiphilic peptoids into nanohelices with controllable supramolecular chirality
Article Open access 16 April 2024

Biomimetic peptide self-assembly for functional materials
Article 15 September 2020

Hierarchical assembly of tryptophan zipper peptides into stress-relaxing bioactive hydrogels
Article Open access 23 October 2023
References
- Yalpani, M. in Polysaccharides: Syntheses, Modifications and Structure/Property Relations 8–49 (Elsevier, 1988).
- Dumitriu, S. Polysaccharides: Structural Diversity and Functional Versatility (CRC, 2004).
- Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA37, 205–211 (1951). ArticleCASPubMedGoogle Scholar
- Young, G. T. & Hardy, P. M. in Amino Acids, Peptides and Proteins Vol. 1 (ed. Young, G. T.) 112–154 (Royal Society of Chemistry, 1969).
- Ruso, J. M. & Piñeiro, Á. Proteins in Solution and at Interfaces: Methods and Applications in Biotechnology and Materials Science (Wiley, 2013).
- Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature171, 737–738 (1953). ArticleCASPubMedGoogle Scholar
- Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature171, 740–741 (1953). ArticleCASPubMedGoogle Scholar
- Ghosh, A. & Bansal, M. A glossary of DNA structures from A to Z. Acta Crystallogr. D Biol. Crystallogr.59, 620–626 (2003). ArticlePubMedCASGoogle Scholar
- Nakamura, Y. in Starch: Metabolism and Structure 1–90 (Springer, 2015).
- Walters, R. F. S. & DeGrado, W. F. Helix-packing motifs in membrane proteins. Proc. Natl Acad. Sci. USA103, 13658–13663 (2006). ArticleCASPubMedGoogle Scholar
- Barth, P. & Senes, A. Toward high-resolution computational design of the structure and function of helical membrane proteins. Nat. Struct. Mol. Biol.23, 475–480 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
- Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem.64, 403–434 (1995). ArticleCASPubMedGoogle Scholar
- Karsdal, M. Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers (Elsevier Science, 2016).
- Travers, A. & Muskhelishvili, G. DNA structure and function. FEBS J.282, 2279–2295 (2015). ArticleCASPubMedGoogle Scholar
- Nelson, D. L., Lehninger, A. L. & Cox, M. M. Lehninger Principles of Biochemistry (Rediff Books, 2017).
- Hecht, S. & Huc, I. Foldamers (Wiley, 2007).
- Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev.109, 6102–6211 (2009). ArticleCASPubMedGoogle Scholar
- Nakano, T. & Okamoto, Y. in Polymer Science: A Comprehensive Reference (eds Matyjaszewski, K. & Möller, M.) 629–687 (Elsevier, 2012).
- Ren, Z. & Gao, P.-X. A review of helical nanostructures: growth theories, synthesis strategies and properties. Nanoscale6, 9366–9400 (2014). ArticleCASPubMedGoogle Scholar
- Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev.116, 13752–13990 (2016). ArticleCASPubMedGoogle Scholar
- Green, J. J. & Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature540, 386–394 (2016). ArticleCASPubMedGoogle Scholar
- Scholz, C. Polymers for Biomedicine: Synthesis, Characterization, and Applications (Wiley, 2017).
- Deming, T. J. et al. Polymers at the interface with biology. Biomacromolecules19, 3151–3162 (2018). ArticlePubMedGoogle Scholar
- Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet.15, 541–555 (2014). ArticleCASPubMedGoogle Scholar
- Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov.13, 655–672 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
- Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature538, 183–192 (2016). ArticleCASPubMedGoogle Scholar
- Kakkar, A., Traverso, G., Farokhzad, O. C., Weissleder, R. & Langer, R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem.1, 0063 (2017). ArticleCASGoogle Scholar
- Ekladious, I., Colson, Y. L. & Grinstaff, M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov.18, 273–294 (2019). ArticleCASPubMedGoogle Scholar
- Lostalé-Seijo, I. & Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem.2, 258–277 (2018). ArticleGoogle Scholar
- Celiz, A. D. et al. Materials for stem cell factories of the future. Nat. Mater.13, 570–579 (2014). ArticleCASPubMedGoogle Scholar
- Khademhosseini, A. & Langer, R. A decade of progress in tissue engineering. Nat. Protoc.11, 1775–1781 (2016). ArticleCASPubMedGoogle Scholar
- Laurent, J. et al. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat. Biomed. Eng.1, 939–956 (2017). ArticleCASPubMedGoogle Scholar
- Xia, H. et al. Tissue repair and regeneration with endogenous stem cells. Nat. Rev. Mater.3, 174–193 (2018). ArticleCASGoogle Scholar
- Elsabahy, M., Heo, G. S., Lim, S.-M., Sun, G. & Wooley, K. L. Polymeric nanostructures for imaging and therapy. Chem. Rev.115, 10967–11011 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
- Fuchs, A. V., Gemmell, A. C. & Thurecht, K. J. Utilising polymers to understand diseases: advanced molecular imaging agents. Polym. Chem.6, 868–880 (2015). ArticleCASGoogle Scholar
- Yu, J., Rong, Y., Kuo, C.-T., Zhou, X.-H. & Chiu, D. T. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Anal. Chem.89, 42–56 (2017). ArticleCASPubMedGoogle Scholar
- Hu, L., Zhang, Q., Li, X. & Serpe, M. J. Stimuli-responsive polymers for sensing and actuation. Mater. Horiz.6, 1774–1793 (2019). ArticleCASGoogle Scholar
- Rodríguez-Hernández, J. Polymers Against Microorganisms: On the Race to Efficient Antimicrobial Materials (Springer, 2017).
- Hartlieb, M., Williams, E. G. L., Kuroki, A., Perrier, S. & Locock, K. E. S. Antimicrobial polymers: mimicking amino acid functionality, sequence control and three-dimensional structure of host-defense peptides. Curr. Med. Chem.24, 2115–2140 (2017). ArticleCASPubMedGoogle Scholar
- Ergene, C., Yasuhara, K. & Palermo, E. F. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym. Chem.9, 2407–2427 (2018). ArticleCASGoogle Scholar
- Deming, T. J. Synthetic polypeptides for biomedical applications. Prog. Polym. Sci.32, 858–875 (2007). ArticleCASGoogle Scholar
- Deng, C. et al. Functional polypeptide and hybrid materials: precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci.39, 330–364 (2014). ArticleCASGoogle Scholar
- Zagorodko, O., Arroyo-Crespo, J. J., Nebot, V. J. & Vicent, M. J. Polypeptide-based conjugates as therapeutics: opportunities and challenges. Macromol. Biosci.17, 1600316 (2017). ArticleCASGoogle Scholar
- Song, Z. et al. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev.46, 6570–6599 (2017). ArticleCASPubMedGoogle Scholar
- Deming, T. J. in Polymer Science: A Comprehensive Reference (eds Matyjaszewski, K. & Möller, M.) 427–449 (Elsevier, 2012).
- Cheng, J. & Deming, T. J. in Peptide-Based Materials (ed. Deming, T.) 1–26 (Springer, 2012).
- Jiang, Z., Chen, J., Ding, J., Zhuang, X. & Chen, X. in Advances in Bioinspired and Biomedical Materials Vol. 1 (eds Ito, Y., Chen, X. & Kang, I.-K.) 149–170 (American Chemical Society, 2017).
- Urnes, P. & Doty, P. in Advances in Protein Chemistry Vol. 16 (eds Anfinsen, C. B. Jr, Anson, M. L., Bailey, K. & Edsall, J. T.) 401–544 (Academic, 1962).
- Katchalski, E., Sela, M., Silman, H. I. & Berger, A. in The Proteins: Composition, Structure and Function (ed. Neurath, H.) 405–602 (Academic, 1964).
- Ramachandran, G. N. & Sasisekharan, V. in Advances in Protein Chemistry Vol. 23 (eds Anfinsen, C. B. Jr, Anson, M. L., Edsall, J. T. & Richards, F. M.) 283–437 (Academic, 1968).
- Dill, K. A. Dominant forces in protein folding. Biochemistry29, 7133–7155 (1990). ArticleCASPubMedGoogle Scholar
- Chou, P. Y. & Fasman, G. D. in Advances in Enzymology and Related Areas of Molecular Biology (ed. Purich, D.) 45–148 (Wiley, 1979).
- Bonduelle, C. Secondary structures of synthetic polypeptide polymers. Polym. Chem.9, 1517–1529 (2018). ArticleCASGoogle Scholar
- Song, Z. et al. Secondary structures in synthetic polypeptides from N-carboxyanhydrides: design, modulation, association, and material applications. Chem. Soc. Rev.47, 7401–7425 (2018). ArticleCASPubMedGoogle Scholar
- Chou, P. Y. & Fasman, G. D. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry13, 211–222 (1974). ArticleCASPubMedGoogle Scholar
- Chou, P. Y. & Fasman, G. D. Prediction of protein conformation. Biochemistry13, 222–245 (1974). ArticleCASPubMedGoogle Scholar
- Sasisekharan, V. Structure of poly-l-proline. II. Acta Crystallogr.12, 897–903 (1959). ArticleCASGoogle Scholar
- MacArthur, M. W. & Thornton, J. M. Influence of proline residues on protein conformation. J. Mol. Biol.218, 397–412 (1991). ArticleCASPubMedGoogle Scholar
- Adzhubei, A. A., Sternberg, M. J. E. & Makarov, A. A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol.425, 2100–2132 (2013). ArticleCASPubMedGoogle Scholar
- Creamer, T. P. & Campbell, M. N. in Advances in Protein Chemistry Vol. 62 (ed. Rose, G. D.) 263–282 (Academic, 2002).
- Shi, Z., Chen, K., Liu, Z. & Kallenbach, N. R. Conformation of the backbone in unfolded proteins. Chem. Rev.106, 1877–1897 (2006). ArticleCASPubMedGoogle Scholar
- Rath, A., Davidson, A. R. & Deber, C. M. The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Pept. Sci.80, 179–185 (2005). ArticleCASGoogle Scholar
- Song, Z. et al. Enzyme-mimetic self-catalyzed polymerization of polypeptide helices. Nat. Commun.10, 5470 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
- De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev.109, 5687–5754 (2009). ArticlePubMedCASGoogle Scholar
- Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature531, 88–91 (2016). ArticlePubMedCASGoogle Scholar
- Baumgartner, R., Fu, H., Song, Z., Lin, Y. & Cheng, J. Cooperative polymerization of α-helices induced by macromolecular architecture. Nat. Chem.9, 614–622 (2017). ArticleCASPubMedGoogle Scholar
- Chen, C. et al. Proximity-induced cooperative polymerization in “hinged” helical polypeptides. J. Am. Chem. Soc.141, 8680–8683 (2019). ArticleCASPubMedGoogle Scholar
- Song, Z. et al. Synthesis of polypeptides via bioinspired polymerization of in situ purified N-carboxyanhydrides. Proc. Natl Acad. Sci. USA116, 10658–10663 (2019). ArticleCASPubMedGoogle Scholar
- Olander, D. S. & Holtzer, A. The stability of the polyglutamic acid alpha helix. J. Am. Chem. Soc.90, 4549–4560 (1968). ArticleCASPubMedGoogle Scholar
- Tomimatsu, Y., Vitello, L. & Gaffield, W. Effect of aggregation on the optical rotatory dispersion of poly(α, l -glutamic acid). Biopolymers4, 653–662 (1966). ArticleCASGoogle Scholar
- Saudek, V., Štokrová, Š. & Schmidt, P. Conformational study of poly(α- l -aspartic acid). Biopolymers21, 1011–1020 (1982). ArticleCASGoogle Scholar
- Lu, H. et al. Ionic polypeptides with unusual helical stability. Nat. Commun.2, 206 (2011). Demonstrates that stable, water-soluble, ionic, helical poly(amino acid)s can be prepared if the helical conformation is stabilized by additional secondary interactions between the side chains, in this case, van der Waals forces. ArticlePubMedCASGoogle Scholar
- Zhang, Y., Lu, H., Lin, Y. & Cheng, J. Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules44, 6641–6644 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
- Engler, A. C., Lee, H. & Hammond, P. T. Highly efficient “grafting onto” a polypeptide backbone using click chemistry. Angew. Chem. Int. Ed.48, 9334–9338 (2009). ArticleCASGoogle Scholar
- Engler, A. C., Bonner, D. K., Buss, H. G., Cheung, E. Y. & Hammond, P. T. The synthetic tuning of clickable pH responsive cationic polypeptides and block copolypeptides. Soft Matter7, 5627–5637 (2011). ArticleCASGoogle Scholar
- Xiao, C. et al. Facile synthesis of glycopolypeptides by combination of ring-opening polymerization of an alkyne-substituted N-carboxyanhydride and click “glycosylation”. Macromol. Rapid Commun.31, 991–997 (2010). ArticleCASPubMedGoogle Scholar
- Kramer, J. R. & Deming, T. J. Preparation of multifunctional and multireactive polypeptides via methionine alkylation. Biomacromolecules13, 1719–1723 (2012). ArticleCASPubMedGoogle Scholar
- Kramer, J. R. & Deming, T. J. Reversible chemoselective tagging and functionalization of methionine containing peptides. Chem. Commun.49, 5144–5146 (2013). ArticleCASGoogle Scholar
- Kramer, J. R. et al. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences. ACS Cent. Sci.1, 83–88 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
- Deming, T. J. Functional modification of thioether groups in peptides, polypeptides, and proteins. Bioconjug. Chem.28, 691–700 (2017). ArticleCASPubMedGoogle Scholar
- Kramer, J. R. & Deming, T. J. Glycopolypeptides with a redox-triggered helix-to-coil transition. J. Am. Chem. Soc.134, 4112–4115 (2012). ArticleCASPubMedGoogle Scholar
- Kramer, J. R. & Deming, T. J. Multimodal switching of conformation and solubility in homocysteine derived polypeptides. J. Am. Chem. Soc.136, 5547–5550 (2014). ArticleCASPubMedGoogle Scholar
- Zhou, M. N. et al. N-carboxyanhydride polymerization of glycopolypeptides that activate antigen-presenting cells through dectin-1 and dectin-2. Angew. Chem. Int. Ed.57, 3137–3142 (2018). ArticleCASGoogle Scholar
- Kramer, J. R. & Deming, T. J. Glycopolypeptides via living polymerization of glycosylated- l -lysine N-carboxyanhydrides. J. Am. Chem. Soc.132, 15068–15071 (2010). ArticleCASPubMedGoogle Scholar
- Kramer, J. R., Onoa, B., Bustamante, C. & Bertozzi, C. R. Chemically tunable mucin chimeras assembled on living cells. Proc. Natl Acad. Sci. USA112, 12574–12579 (2015). Demonstrates that helical conformations other than the α-helix can be obtained for glycosylated poly(amino acid)s, depending on the sugar conjugated and the nature of the linkage. ArticleCASPubMedGoogle Scholar
- Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol.3, 238–250 (2005). ArticleCASPubMedGoogle Scholar
- Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov.11, 37–51 (2012). ArticleCASGoogle Scholar
- Stanzl, E. G., Trantow, B. M., Vargas, J. R. & Wender, P. A. Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc. Chem. Res.46, 2944–2954 (2013). ArticleCASPubMedGoogle Scholar
- Copolovici, D. M., Langel, K., Eriste, E. & Langel, Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano8, 1972–1994 (2014). ArticleCASPubMedGoogle Scholar
- Wyrsta, M. D., Cogen, A. L. & Deming, T. J. A parallel synthetic approach for the analysis of membrane interactive copolypeptides. J. Am. Chem. Soc.123, 12919–12920 (2001). ArticleCASPubMedGoogle Scholar
- Koller, D. & Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta1838, 2250–2259 (2014). ArticleCASPubMedGoogle Scholar
- Xiong, M. et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc. Natl Acad. Sci. USA112, 13155–13160 (2015). ArticleCASPubMedGoogle Scholar
- Xiong, M. et al. Selective killing of Helicobacter pylori with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides. Proc. Natl Acad. Sci. USA114, 12675–12680 (2017). ArticleCASPubMedGoogle Scholar
- Xiong, M. et al. Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition. Angew. Chem. Int. Ed.56, 10826–10829 (2017). ArticleCASGoogle Scholar
- Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol.1, 16162 (2016). ArticleCASPubMedGoogle Scholar
- Shirbin, S. J. et al. Architectural effects of star-shaped “structurally nanoengineered antimicrobial peptide polymers” (SNAPPs) on their biological activity. Adv. Healthc. Mater.7, 1800627 (2018). ArticleCASGoogle Scholar
- Engler, A. C. et al. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules12, 1666–1674 (2011). ArticleCASPubMedGoogle Scholar
- Ahmed, M. Peptides, polypeptides and peptide–polymer hybrids as nucleic acid carriers. Biomater. Sci.5, 2188–2211 (2017). ArticleCASPubMedGoogle Scholar
- Chen, J., Guan, X., Hu, Y., Tian, H. & Chen, X. in Polymeric Gene Delivery Systems (ed. Cheng, Y.) 85–112 (Springer, (2017).
- Miyata, K., Nishiyama, N. & Kataoka, K. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem. Soc. Rev.41, 2562–2574 (2012). ArticleCASPubMedGoogle Scholar
- Mutaf, O. F., Kishimura, A., Mochida, Y., Kim, A. & Kataoka, K. Induction of secondary structure through micellization of an oppositely charged pair of homochiral block- and homopolypeptides in an aqueous medium. Macromol. Rapid Commun.36, 1958–1964 (2015). ArticleCASPubMedGoogle Scholar
- Perry, S. L. et al. Chirality-selected phase behaviour in ionic polypeptide complexes. Nat. Commun.6, 6052 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
- Gabrielson, N. P. et al. Reactive and bioactive cationic α-helical polypeptide template for nonviral gene delivery. Angew. Chem. Int. Ed.51, 1143–1147 (2012). ArticleCASGoogle Scholar
- Gabrielson, N. P., Lu, H., Yin, L., Kim, K. H. & Cheng, J. A cell-penetrating helical polymer for siRNA delivery to mammalian cells. Mol. Ther.20, 1599–1609 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
- Wang, H.-X. et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl Acad. Sci. USA115, 4903–4908 (2018). ArticleCASPubMedGoogle Scholar
- Yin, L. et al. Non-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes. Adv. Mater.25, 3063–3070 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
- He, H. et al. Suppression of hepatic inflammation via systemic siRNA delivery by membrane-disruptive and endosomolytic helical polypeptide hybrid nanoparticles. ACS Nano10, 1859–1870 (2016). ArticleCASPubMedGoogle Scholar
- Liu, Y. et al. Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles. Nanoscale10, 15339–15349 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
- Yin, L. et al. Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: toward nonviral gene delivery. Angew. Chem. Int. Ed.52, 9182–9186 (2013). ArticleCASGoogle Scholar
- Zheng, N. et al. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery. Acta Biomater.58, 146–157 (2017). ArticleCASPubMedGoogle Scholar
- Li, F. et al. Engineering the aromaticity of cationic helical polypeptides toward “self-activated” DNA/siRNA delivery. ACS Appl. Mater. Interfaces9, 23586–23601 (2017). ArticleCASPubMedGoogle Scholar
- Dang, J. et al. Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism. Biomaterials223, 119463 (2019). ArticleCASPubMedGoogle Scholar
- Pelegri-O’Day, E. M., Lin, E.-W. & Maynard, H. D. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc.136, 14323–14332 (2014). ArticlePubMedCASGoogle Scholar
- Hou, Y. et al. Therapeutic protein PEPylation: the helix of nonfouling synthetic polypeptides minimizes antidrug antibody generation. ACS Cent. Sci.5, 229–236 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
- Zhang, C. et al. From neutral to zwitterionic poly(α-amino acid) nonfouling surfaces: effects of helical conformation and anchoring orientation. Biomaterials178, 728–737 (2018). ArticleCASPubMedGoogle Scholar
- Cabral, H. & Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release190, 465–476 (2014). ArticleCASPubMedGoogle Scholar
- Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev.118, 6844–6892 (2018). ArticleCASPubMedGoogle Scholar
- Olsen, B. D. & Segalman, R. A. Self-assembly of rod–coil block copolymers. Mater. Sci. Eng. R. Rep.62, 37–66 (2008). ArticleCASGoogle Scholar
- Holowka, E. P., Pochan, D. J. & Deming, T. J. Charged polypeptide vesicles with controllable diameter. J. Am. Chem. Soc.127, 12423–12428 (2005). ArticleCASPubMedGoogle Scholar
- Holowka, E. P., Sun, V. Z., Kamei, D. T. & Deming, T. J. Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat. Mater.6, 52–57 (2007). ArticleCASPubMedGoogle Scholar
- Choe, U.-J. et al. Endocytosis and intracellular trafficking properties of transferrin-conjugated block copolypeptide vesicles. Biomacromolecules14, 1458–1464 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
- Schatz, C., Louguet, S., Le Meins, J. & Lecommandoux, S. Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. Angew. Chem. Int. Ed.48, 2572–2575 (2009). ArticleCASGoogle Scholar
- Upadhyay, K. K. et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l -glutamate)-b-hyaluronan polymersomes. Biomaterials31, 2882–2892 (2010). ArticleCASPubMedGoogle Scholar
- Quadir, M. A., Martin, M. & Hammond, P. T. Clickable synthetic polypeptides–routes to new highly adaptive biomaterials. Chem. Mater.26, 461–476 (2014). ArticleCASGoogle Scholar
- Quadir, M. A. et al. Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications. Nanomedicine13, 1797–1808 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
- Mochida, Y. et al. Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano8, 6724–6738 (2014). Demonstrates that the helical conformation can be induced upon loading of a drug, improving not only the mechanical properties of the formed micelles but also their pharmaceutical properties. ArticleCASPubMedGoogle Scholar
- Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol.6, 815–823 (2011). ArticleCASPubMedGoogle Scholar
- Peppas, N. A. Hydrogels in Medicine and Pharmacy: Properties and Applications Vol. 3 (CRC, 2019).
- Nowak, A. P. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature417, 424–428 (2002). Demonstrates that the helical conformation has a significant impact on the mechanical properties of synthetic hydrogels, paving the way to the application of these materials for tissue engineering and drug delivery. ArticleCASPubMedGoogle Scholar
- Breedveld, V., Nowak, A. P., Sato, J., Deming, T. J. & Pine, D. J. Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules37, 3943–3953 (2004). ArticleCASGoogle Scholar
- Deming, T. J. Polypeptide hydrogels via a unique assembly mechanism. Soft Matter1, 28–35 (2005). ArticleCASPubMedGoogle Scholar
- Zhang, S., Alvarez, D. J., Sofroniew, M. V. & Deming, T. J. Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties. Biomacromolecules16, 1331–1340 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
- Wollenberg, A. L. et al. Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery. Biomaterials178, 527–545 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
- Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature532, 195–200 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
- Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature561, 396–400 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
- Schwartz, E., Koepf, M., Kitto, H. J., Nolte, R. J. M. & Rowan, A. E. Helical poly(isocyanides): past, present and future. Polym. Chem.2, 33–47 (2011). ArticleCASGoogle Scholar
- Akeroyd, N., Nolte, R. J. M. & Rowan, A. E. in Isocyanide Chemistry: Applications in Synthesis and Material Science (Wiley, 2012).
- Kollmar, C. & Hoffmann, R. Polyisocyanides: electronic or steric reasons for their presumed helical structure? J. Am. Chem. Soc.112, 8230–8238 (1990). ArticleCASGoogle Scholar
- Clericuzio, M., Alagona, G., Ghio, C. & Salvadori, P. Theoretical investigations on the structure of poly(iminomethylenes) with aliphatic side chains. Conformational studies and comparison with experimental spectroscopic data. J. Am. Chem. Soc.119, 1059–1071 (1997). ArticleCASGoogle Scholar
- Hase, Y. et al. Mechanism of helix induction in poly(4-carboxyphenyl isocyanide) with chiral amines and memory of the macromolecular helicity and its helical structures. J. Am. Chem. Soc.131, 10719–10732 (2009). ArticleCASPubMedGoogle Scholar
- Cornelissen, J. J. L. M. et al. β-Helical polymers from isocyanopeptides. Science293, 676–680 (2001). Describes the preparation of poly(isocyanide)s with stable helicity in aqueous conditions as a result of the H-bond network formed between the peptide side chains. ArticleCASPubMedGoogle Scholar
- Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature493, 651–655 (2013). ArticleCASPubMedGoogle Scholar
- Das, R. K., Gocheva, V., Hammink, R., Zouani, O. F. & Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater.15, 318–325 (2016). ArticleCASPubMedGoogle Scholar
- de Almeida, P. et al. Cytoskeletal stiffening in synthetic hydrogels. Nat. Commun.10, 609 (2019). Reports the use of β-helical poly(isocyanide)s to form strain-stiffening gels that mimic the mechanical properties of the extracellular matrix. ArticlePubMedPubMed CentralCASGoogle Scholar
- op ‘t Veld, R. C. et al. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials181, 392–401 (2018). ArticlePubMedCASGoogle Scholar
- Cornelissen, J. J. L. M., Fischer, M., Sommerdijk, N. A. J. M. & Nolte, R. J. M. Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science280, 1427–1430 (1998). ArticleCASPubMedGoogle Scholar
- Vriezema, D. M. et al. Vesicles and polymerized vesicles from thiophene-containing rod–coil block copolymers. Angew. Chem. Int. Ed.42, 772–776 (2003). Reports the use of poly(isocyanide)s to prepare block copolymers that can afford vesicles in both organic and aqueous conditions, as a result of the unique solubility of the poly(isocyanide) block and its helical conformation. ArticleCASGoogle Scholar
- van Oers, M. C. M., Rutjes, F. P. J. T. & van Hest, J. C. M. Cascade reactions in nanoreactors. Curr. Opin. Biotechnol.28, 10–16 (2014). ArticlePubMedCASGoogle Scholar
- Che, H. & van Hest, J. C. M. Adaptive polymersome nanoreactors. ChemNanoMat5, 1092–1109 (2019). ArticleCASGoogle Scholar
- Vriezema, D. M. et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. Int. Ed.46, 7378–7382 (2007). ArticleCASGoogle Scholar
- van Dongen, S. F. M., Nallani, M., Cornelissen, J. J. L. M., Nolte, R. J. M. & van Hest, J. C. M. A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chem. Eur. J.15, 1107–1114 (2009). ArticlePubMedCASGoogle Scholar
- Peters, R. J. R. W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed.53, 146–150 (2014). ArticleCASGoogle Scholar
- Peters, R. J. R. W., Louzao, I. & van Hest, J. C. M. From polymeric nanoreactors to artificial organelles. Chem. Sci.3, 335–342 (2012). ArticleCASGoogle Scholar
- Godoy-Gallardo, M., York-Duran, M. J. & Hosta-Rigau, L. Recent progress in micro/nanoreactors toward the creation of artificial organelles. Adv. Healthc. Mater.7, 1700917 (2018). ArticleCASGoogle Scholar
- van Dongen, S. F. M. et al. Cellular integration of an enzyme-loaded polymersome nanoreactor. Angew. Chem. Int. Ed.49, 7213–7216 (2010). ArticleGoogle Scholar
- Liu, J., Lam, J. W. Y. & Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev.109, 5799–5867 (2009). ArticleCASPubMedGoogle Scholar
- Masuda, T. & Zhang, A. in Handbook of Metathesis (eds Grubbs, R. H., Wenzel, A. G., O’Leary, D. J. & Khosravi, E.) 375–390 (Wiley, 2015).
- Simionescu, C. I. & Percec, V. Thermal cis–trans isomerization of cis–transoidal polyphenylacetylene. J. Polym. Sci. Polym. Chem. Ed.18, 147–155 (1980). ArticleCASGoogle Scholar
- Percec, V. & Rudick, J. G. Independent electrocyclization and oxidative chain cleavage along the backbone of cis-poly(phenylacetylene). Macromolecules38, 7241–7250 (2005). ArticleCASGoogle Scholar
- Masuda, T., Izumikawa, H., Misumi, Y. & Higashimura, T. Stereospecific polymerization of tert-butylacetylene by molybdenum catalysts. Effect of acid-catalyzed geometric isomerization. Macromolecules29, 1167–1171 (1996). ArticleCASGoogle Scholar
- Maeda, K. & Yashima, E. Helical polyacetylenes induced via noncovalent chiral interactions and their applications as chiral materials. Top. Curr. Chem.375, 72 (2017). ArticleCASGoogle Scholar
- Freire, F., Seco, J. M., Quiñoá, E. & Riguera, R. Chiral amplification and helical-sense tuning by mono- and divalent metals on dynamic helical polymers. Angew. Chem. Int. Ed.50, 11692–11696 (2011). ArticleCASGoogle Scholar
- Rodríguez, R., Quiñoá, E., Riguera, R. & Freire, F. Architecture of chiral poly(phenylacetylene)s: from compressed/highly dynamic to stretched/quasi-static helices. J. Am. Chem. Soc.138, 9620–9628 (2016). A complete description of the dynamic nature of poly(acetylene)s, explored through theoretical, experimental and computational methods. ArticlePubMedCASGoogle Scholar
- Cobos, K., Quiñoá, E., Riguera, R. & Freire, F. Chiral-to-chiral communication in polymers: a unique approach to control both helical sense and chirality at the periphery. J. Am. Chem. Soc.140, 12239–12246 (2018). ArticleCASPubMedGoogle Scholar
- Arias, S., Freire, F., Quiñoá, E. & Riguera, R. Nanospheres, nanotubes, toroids, and gels with controlled macroscopic chirality. Angew. Chem. Int. Ed.53, 13720–13724 (2014). ArticleCASGoogle Scholar
- Arias, S., Núñez-Martínez, M., Quiñoá, E., Riguera, R. & Freire, F. Simultaneous adjustment of size and helical sense of chiral nanospheres and nanotubes derived from an axially racemic poly(phenylacetylene). Small13, 1602398 (2017). ArticleCASGoogle Scholar
- Xu, A., Masuda, T. & Zhang, A. Stimuli-responsive polyacetylenes and dendronized poly(phenylacetylene)s. Polym. Rev.57, 138–158 (2017). ArticleCASGoogle Scholar
- Lv, Z., Chen, Z., Shao, K., Qing, G. & Sun, T. Stimuli-directed helical chirality inversion and bio-applications. Polymers8, 310 (2016). ArticlePubMed CentralCASGoogle Scholar
- Yashima, E., Nimura, T., Matsushima, T. & Okamoto, Y. Poly((4-dihydroxyborophenyl)acetylene) as a novel probe for chirality and structural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism. J. Am. Chem. Soc.118, 9800–9801 (1996). The demonstration that functional poly(acetylene)s can adapt their helical sense and pitch to biologically relevant metabolites, such as a glucose or steroids. ArticleCASGoogle Scholar
- Hall, D. G. in Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine 1–99 (Wiley, 2005).
- Nonokawa, R. & Yashima, E. Detection and amplification of a small enantiomeric imbalance in α-amino acids by a helical poly(phenylacetylene) with crown ether pendants. J. Am. Chem. Soc.125, 1278–1283 (2003). ArticleCASPubMedGoogle Scholar
- Li, B. S. et al. Tuning the chain helicity and organizational morphology of an l -valine-containing polyacetylene by pH change. Nano Lett.1, 323–328 (2001). ArticleCASGoogle Scholar
- Arias, S., Freire, F., Calderón, M. & Bergueiro, J. Unexpected chiro-thermoresponsive behavior of helical poly(phenylacetylene)s bearing elastin-based side chains. Angew. Chem. Int. Ed.56, 11420–11425 (2017). The demonstration that not only can thermoresponsive poly(acetylene)s be prepared but that the arrangement of the thermoresponsive moieties around a helical axis can impact the conformational changes upon heating, resulting in an unexpected increase in solubility. ArticleCASGoogle Scholar
- Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett.589, 2477–2486 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
- Bhattacharyya, J., Bellucci, J. J. & Chilkoti, A. in Biomaterials from Nature for Advanced Devices and Therapies (eds Neves, N. M. & Reis, R. L.) 106–126 (Wiley, 2016).
- Freire, F., Quiñoá, E. & Riguera, R. Supramolecular assemblies from poly(phenylacetylene)s. Chem. Rev.116, 1242–1271 (2016). ArticleCASPubMedGoogle Scholar
- Zhao, B. & Deng, J. Emulsion polymerization of acetylenics for constructing optically active helical polymer nanoparticles. Polym. Rev.57, 119–137 (2017). ArticleCASGoogle Scholar
- Liang, J. & Deng, J. Chiral particles consisting of helical polylactide and helical substituted polyacetylene: preparation and synergistic effects in enantio-differentiating release. Macromolecules51, 4003–4011 (2018). ArticleCASGoogle Scholar
- Wang, H. et al. Chiral, thermal-responsive hydrogels containing helical hydrophilic polyacetylene: preparation and enantio-differentiating release ability. Polym. Chem.10, 1780–1786 (2019). ArticleCASGoogle Scholar
- Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed.46, 3693–3696 (2007). ArticleCASGoogle Scholar
- Lotz, B. in Synthesis, Structure and Properties of Poly(lactic acid) (eds Di Lorenzo, M. L. & Androsch, R.) 273–302 (Springer, 2018).
- Thomas, S. W., Joly, G. D. & Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev.107, 1339–1386 (2007). ArticleCASPubMedGoogle Scholar
- Zhu, C., Liu, L., Yang, Q., Lv, F. & Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev.112, 4687–4735 (2012). ArticleCASPubMedGoogle Scholar
- Liu, B. & Bazan, G. C. (eds) Conjugated Polyelectrolytes: Fundamentals and Applications (Wiley, 2013).
- Kane-Maguire, L. A. P. & Wallace, G. G. Chiral conducting polymers. Chem. Soc. Rev.39, 2545–2576 (2010). ArticleCASPubMedGoogle Scholar
- Ho, H.-A., Najari, A. & Leclerc, M. Optical detection of DNA and proteins with cationic polythiophenes. Acc. Chem. Res.41, 168–178 (2008). ArticleCASPubMedGoogle Scholar
- Ho, H. et al. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew. Chem. Int. Ed.41, 1548–1551 (2002). The demonstration that a helical conformation in conjugated polymers leads to unique spectroscopic responses that can be exploited to sense chemical mutations in DNA. ArticleCASGoogle Scholar
- Doré, K. et al. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J. Am. Chem. Soc.126, 4240–4244 (2004). ArticlePubMedCASGoogle Scholar
- Ho, H. A. et al. Direct molecular detection of nucleic acids by fluorescence signal amplification. J. Am. Chem. Soc.127, 12673–12676 (2005). ArticleCASPubMedGoogle Scholar
- Nilsson, K. P. R. & Inganäs, O. Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nat. Mater.2, 419–424 (2003). ArticleCASPubMedGoogle Scholar
- Najari, A. et al. Reagentless ultrasensitive specific DNA array detection based on responsive polymeric biochips. Anal. Chem.78, 7896–7899 (2006). ArticleCASPubMedGoogle Scholar
- Fukuhara, G. & Inoue, Y. Highly selective oligosaccharide sensing by a curdlan–polythiophene hybrid. J. Am. Chem. Soc.133, 768–770 (2011). ArticleCASPubMedGoogle Scholar
- Nilsson, K. P. R., Rydberg, J., Baltzer, L. & Inganäs, O. Twisting macromolecular chains: self-assembly of a chiral supermolecule from nonchiral polythiophene polyanions and random-coil synthetic peptides. Proc. Natl Acad. Sci. USA101, 11197–11202 (2004). ArticleCASPubMedGoogle Scholar
- Sigurdson, C. J. et al. Prion strain discrimination using luminescent conjugated polymers. Nat. Methods4, 1023–1030 (2007). ArticleCASPubMedGoogle Scholar
- Lim, E.-K. et al. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev.115, 327–394 (2015). ArticleCASPubMedGoogle Scholar
- Betts, J. G. et al. in Anatomy and Physiology Ch. 3.1 (OpenStax, 2013).
Acknowledgements
P.F.-T. thanks the University of Birmingham for the John Evans Fellowship. T.L. gratefully acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) through a studentship from the Centre for Doctoral Training in Physical Sciences for Health (EP/L016346/1).
Author information
Authors and Affiliations
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK Thomas Leigh & Paco Fernandez-Trillo
- Thomas Leigh
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
Contributions
T.L. and P.F.-T. reviewed the literature, organized the Review and designed the figures. P.F.-T. wrote the manuscript, with both authors contributing to the final version of the Review.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks C. Scholz, E. Palermo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
Secondary structure
The conformational arrangement (α-helix, β-pleated sheet etc.) of the backbone segments of a macromolecule, such as a polypeptide chain of a protein, without regard to the conformation of the side chains or the relationship to other segments.
The chirality of a helical, propeller or screw-shaped molecular entity.
The molecular conformation of a spiral nature, generated by regularly repeating rotations around the backbone bonds of a macromolecule.
The sense of rotation around the helical axis. Viewing from either end of a molecule downwards along the helical axis, the system has P helicity (or plus) if the rotation is clockwise (or right-handed) and M helicity (or minus) if the rotation is anticlockwise (or left-handed).
The translocation of a therapeutic agent to the site of activity or infection.
Bacteria that have a thin peptidoglycan layer and an outer lipid membrane.
Bacteria that have a thick peptidoglycan layer and no outer lipid membrane.
A process by which foreign genetic material, for example, DNA or RNA, is transferred to host cells for applications such as genetic research or gene therapy. Gene delivery can result in multiple effects, including gene knockdown, i.e. the deactivation or suppression of a gene, gene knockin, i.e. the one-for-one substitution of a gene into a host’s genome, or gene knockout, i.e. the total removal or permanent deactivation of a gene.
The deactivation or suppression of a gene.
Also known as (chain) identity period or (chain) conformational repeating unit. The distance or number of residues along the chain axis for a complete turn. This conformational unit is repeated along the chain through symmetry operations. In an α-helix formed from α-amino acids, there are 3.6 residues per ‘turn’, with a 5.4-angstroms turn.