Helical polymers for biological and medical applications

Helices are the most prevalent secondary structure in biomolecules and play vital roles in their activity. Chemists have been fascinated with mimicking this molecular conformation with synthetic materials. Research has now been devoted to the synthesis and characterization of helical materials, and to understand the design principles behind this molecular architecture. In parallel, work has been done to develop synthetic polymers for biological and medical applications. We now have access to materials with controlled size, molecular conformation, multivalency or functionality. As a result, synthetic polymers are being investigated in areas such as drug and gene delivery, tissue engineering, imaging and sensing, or as polymer therapeutics. Here, we provide a critical view of where these two fields, helical polymers and polymers for biological and medical applications, overlap. We have selected relevant polymer families and examples to illustrate the range of applications that can be targeted and the impact of the helical conformation on the performance. For each family of polymers, we briefly describe how they can be prepared, what helical conformations are observed and what parameters control helicity. We close this Review with an outlook of the challenges ahead, including the characterization of helicity through the process and the identification of biocompatibility.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Assembly of short amphiphilic peptoids into nanohelices with controllable supramolecular chirality

Article Open access 16 April 2024

Biomimetic peptide self-assembly for functional materials

Article 15 September 2020

Hierarchical assembly of tryptophan zipper peptides into stress-relaxing bioactive hydrogels

Article Open access 23 October 2023

References

  1. Yalpani, M. in Polysaccharides: Syntheses, Modifications and Structure/Property Relations 8–49 (Elsevier, 1988).
  2. Dumitriu, S. Polysaccharides: Structural Diversity and Functional Versatility (CRC, 2004).
  3. Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA37, 205–211 (1951). ArticleCASPubMedGoogle Scholar
  4. Young, G. T. & Hardy, P. M. in Amino Acids, Peptides and Proteins Vol. 1 (ed. Young, G. T.) 112–154 (Royal Society of Chemistry, 1969).
  5. Ruso, J. M. & Piñeiro, Á. Proteins in Solution and at Interfaces: Methods and Applications in Biotechnology and Materials Science (Wiley, 2013).
  6. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature171, 737–738 (1953). ArticleCASPubMedGoogle Scholar
  7. Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature171, 740–741 (1953). ArticleCASPubMedGoogle Scholar
  8. Ghosh, A. & Bansal, M. A glossary of DNA structures from A to Z. Acta Crystallogr. D Biol. Crystallogr.59, 620–626 (2003). ArticlePubMedCASGoogle Scholar
  9. Nakamura, Y. in Starch: Metabolism and Structure 1–90 (Springer, 2015).
  10. Walters, R. F. S. & DeGrado, W. F. Helix-packing motifs in membrane proteins. Proc. Natl Acad. Sci. USA103, 13658–13663 (2006). ArticleCASPubMedGoogle Scholar
  11. Barth, P. & Senes, A. Toward high-resolution computational design of the structure and function of helical membrane proteins. Nat. Struct. Mol. Biol.23, 475–480 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  12. Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem.64, 403–434 (1995). ArticleCASPubMedGoogle Scholar
  13. Karsdal, M. Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers (Elsevier Science, 2016).
  14. Travers, A. & Muskhelishvili, G. DNA structure and function. FEBS J.282, 2279–2295 (2015). ArticleCASPubMedGoogle Scholar
  15. Nelson, D. L., Lehninger, A. L. & Cox, M. M. Lehninger Principles of Biochemistry (Rediff Books, 2017).
  16. Hecht, S. & Huc, I. Foldamers (Wiley, 2007).
  17. Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev.109, 6102–6211 (2009). ArticleCASPubMedGoogle Scholar
  18. Nakano, T. & Okamoto, Y. in Polymer Science: A Comprehensive Reference (eds Matyjaszewski, K. & Möller, M.) 629–687 (Elsevier, 2012).
  19. Ren, Z. & Gao, P.-X. A review of helical nanostructures: growth theories, synthesis strategies and properties. Nanoscale6, 9366–9400 (2014). ArticleCASPubMedGoogle Scholar
  20. Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev.116, 13752–13990 (2016). ArticleCASPubMedGoogle Scholar
  21. Green, J. J. & Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature540, 386–394 (2016). ArticleCASPubMedGoogle Scholar
  22. Scholz, C. Polymers for Biomedicine: Synthesis, Characterization, and Applications (Wiley, 2017).
  23. Deming, T. J. et al. Polymers at the interface with biology. Biomacromolecules19, 3151–3162 (2018). ArticlePubMedGoogle Scholar
  24. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet.15, 541–555 (2014). ArticleCASPubMedGoogle Scholar
  25. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov.13, 655–672 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  26. Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature538, 183–192 (2016). ArticleCASPubMedGoogle Scholar
  27. Kakkar, A., Traverso, G., Farokhzad, O. C., Weissleder, R. & Langer, R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem.1, 0063 (2017). ArticleCASGoogle Scholar
  28. Ekladious, I., Colson, Y. L. & Grinstaff, M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov.18, 273–294 (2019). ArticleCASPubMedGoogle Scholar
  29. Lostalé-Seijo, I. & Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem.2, 258–277 (2018). ArticleGoogle Scholar
  30. Celiz, A. D. et al. Materials for stem cell factories of the future. Nat. Mater.13, 570–579 (2014). ArticleCASPubMedGoogle Scholar
  31. Khademhosseini, A. & Langer, R. A decade of progress in tissue engineering. Nat. Protoc.11, 1775–1781 (2016). ArticleCASPubMedGoogle Scholar
  32. Laurent, J. et al. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat. Biomed. Eng.1, 939–956 (2017). ArticleCASPubMedGoogle Scholar
  33. Xia, H. et al. Tissue repair and regeneration with endogenous stem cells. Nat. Rev. Mater.3, 174–193 (2018). ArticleCASGoogle Scholar
  34. Elsabahy, M., Heo, G. S., Lim, S.-M., Sun, G. & Wooley, K. L. Polymeric nanostructures for imaging and therapy. Chem. Rev.115, 10967–11011 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  35. Fuchs, A. V., Gemmell, A. C. & Thurecht, K. J. Utilising polymers to understand diseases: advanced molecular imaging agents. Polym. Chem.6, 868–880 (2015). ArticleCASGoogle Scholar
  36. Yu, J., Rong, Y., Kuo, C.-T., Zhou, X.-H. & Chiu, D. T. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Anal. Chem.89, 42–56 (2017). ArticleCASPubMedGoogle Scholar
  37. Hu, L., Zhang, Q., Li, X. & Serpe, M. J. Stimuli-responsive polymers for sensing and actuation. Mater. Horiz.6, 1774–1793 (2019). ArticleCASGoogle Scholar
  38. Rodríguez-Hernández, J. Polymers Against Microorganisms: On the Race to Efficient Antimicrobial Materials (Springer, 2017).
  39. Hartlieb, M., Williams, E. G. L., Kuroki, A., Perrier, S. & Locock, K. E. S. Antimicrobial polymers: mimicking amino acid functionality, sequence control and three-dimensional structure of host-defense peptides. Curr. Med. Chem.24, 2115–2140 (2017). ArticleCASPubMedGoogle Scholar
  40. Ergene, C., Yasuhara, K. & Palermo, E. F. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym. Chem.9, 2407–2427 (2018). ArticleCASGoogle Scholar
  41. Deming, T. J. Synthetic polypeptides for biomedical applications. Prog. Polym. Sci.32, 858–875 (2007). ArticleCASGoogle Scholar
  42. Deng, C. et al. Functional polypeptide and hybrid materials: precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci.39, 330–364 (2014). ArticleCASGoogle Scholar
  43. Zagorodko, O., Arroyo-Crespo, J. J., Nebot, V. J. & Vicent, M. J. Polypeptide-based conjugates as therapeutics: opportunities and challenges. Macromol. Biosci.17, 1600316 (2017). ArticleCASGoogle Scholar
  44. Song, Z. et al. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev.46, 6570–6599 (2017). ArticleCASPubMedGoogle Scholar
  45. Deming, T. J. in Polymer Science: A Comprehensive Reference (eds Matyjaszewski, K. & Möller, M.) 427–449 (Elsevier, 2012).
  46. Cheng, J. & Deming, T. J. in Peptide-Based Materials (ed. Deming, T.) 1–26 (Springer, 2012).
  47. Jiang, Z., Chen, J., Ding, J., Zhuang, X. & Chen, X. in Advances in Bioinspired and Biomedical Materials Vol. 1 (eds Ito, Y., Chen, X. & Kang, I.-K.) 149–170 (American Chemical Society, 2017).
  48. Urnes, P. & Doty, P. in Advances in Protein Chemistry Vol. 16 (eds Anfinsen, C. B. Jr, Anson, M. L., Bailey, K. & Edsall, J. T.) 401–544 (Academic, 1962).
  49. Katchalski, E., Sela, M., Silman, H. I. & Berger, A. in The Proteins: Composition, Structure and Function (ed. Neurath, H.) 405–602 (Academic, 1964).
  50. Ramachandran, G. N. & Sasisekharan, V. in Advances in Protein Chemistry Vol. 23 (eds Anfinsen, C. B. Jr, Anson, M. L., Edsall, J. T. & Richards, F. M.) 283–437 (Academic, 1968).
  51. Dill, K. A. Dominant forces in protein folding. Biochemistry29, 7133–7155 (1990). ArticleCASPubMedGoogle Scholar
  52. Chou, P. Y. & Fasman, G. D. in Advances in Enzymology and Related Areas of Molecular Biology (ed. Purich, D.) 45–148 (Wiley, 1979).
  53. Bonduelle, C. Secondary structures of synthetic polypeptide polymers. Polym. Chem.9, 1517–1529 (2018). ArticleCASGoogle Scholar
  54. Song, Z. et al. Secondary structures in synthetic polypeptides from N-carboxyanhydrides: design, modulation, association, and material applications. Chem. Soc. Rev.47, 7401–7425 (2018). ArticleCASPubMedGoogle Scholar
  55. Chou, P. Y. & Fasman, G. D. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry13, 211–222 (1974). ArticleCASPubMedGoogle Scholar
  56. Chou, P. Y. & Fasman, G. D. Prediction of protein conformation. Biochemistry13, 222–245 (1974). ArticleCASPubMedGoogle Scholar
  57. Sasisekharan, V. Structure of poly-l-proline. II. Acta Crystallogr.12, 897–903 (1959). ArticleCASGoogle Scholar
  58. MacArthur, M. W. & Thornton, J. M. Influence of proline residues on protein conformation. J. Mol. Biol.218, 397–412 (1991). ArticleCASPubMedGoogle Scholar
  59. Adzhubei, A. A., Sternberg, M. J. E. & Makarov, A. A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol.425, 2100–2132 (2013). ArticleCASPubMedGoogle Scholar
  60. Creamer, T. P. & Campbell, M. N. in Advances in Protein Chemistry Vol. 62 (ed. Rose, G. D.) 263–282 (Academic, 2002).
  61. Shi, Z., Chen, K., Liu, Z. & Kallenbach, N. R. Conformation of the backbone in unfolded proteins. Chem. Rev.106, 1877–1897 (2006). ArticleCASPubMedGoogle Scholar
  62. Rath, A., Davidson, A. R. & Deber, C. M. The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Pept. Sci.80, 179–185 (2005). ArticleCASGoogle Scholar
  63. Song, Z. et al. Enzyme-mimetic self-catalyzed polymerization of polypeptide helices. Nat. Commun.10, 5470 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  64. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev.109, 5687–5754 (2009). ArticlePubMedCASGoogle Scholar
  65. Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature531, 88–91 (2016). ArticlePubMedCASGoogle Scholar
  66. Baumgartner, R., Fu, H., Song, Z., Lin, Y. & Cheng, J. Cooperative polymerization of α-helices induced by macromolecular architecture. Nat. Chem.9, 614–622 (2017). ArticleCASPubMedGoogle Scholar
  67. Chen, C. et al. Proximity-induced cooperative polymerization in “hinged” helical polypeptides. J. Am. Chem. Soc.141, 8680–8683 (2019). ArticleCASPubMedGoogle Scholar
  68. Song, Z. et al. Synthesis of polypeptides via bioinspired polymerization of in situ purified N-carboxyanhydrides. Proc. Natl Acad. Sci. USA116, 10658–10663 (2019). ArticleCASPubMedGoogle Scholar
  69. Olander, D. S. & Holtzer, A. The stability of the polyglutamic acid alpha helix. J. Am. Chem. Soc.90, 4549–4560 (1968). ArticleCASPubMedGoogle Scholar
  70. Tomimatsu, Y., Vitello, L. & Gaffield, W. Effect of aggregation on the optical rotatory dispersion of poly(α, l -glutamic acid). Biopolymers4, 653–662 (1966). ArticleCASGoogle Scholar
  71. Saudek, V., Štokrová, Š. & Schmidt, P. Conformational study of poly(α- l -aspartic acid). Biopolymers21, 1011–1020 (1982). ArticleCASGoogle Scholar
  72. Lu, H. et al. Ionic polypeptides with unusual helical stability. Nat. Commun.2, 206 (2011). Demonstrates that stable, water-soluble, ionic, helical poly(amino acid)s can be prepared if the helical conformation is stabilized by additional secondary interactions between the side chains, in this case, van der Waals forces. ArticlePubMedCASGoogle Scholar
  73. Zhang, Y., Lu, H., Lin, Y. & Cheng, J. Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules44, 6641–6644 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  74. Engler, A. C., Lee, H. & Hammond, P. T. Highly efficient “grafting onto” a polypeptide backbone using click chemistry. Angew. Chem. Int. Ed.48, 9334–9338 (2009). ArticleCASGoogle Scholar
  75. Engler, A. C., Bonner, D. K., Buss, H. G., Cheung, E. Y. & Hammond, P. T. The synthetic tuning of clickable pH responsive cationic polypeptides and block copolypeptides. Soft Matter7, 5627–5637 (2011). ArticleCASGoogle Scholar
  76. Xiao, C. et al. Facile synthesis of glycopolypeptides by combination of ring-opening polymerization of an alkyne-substituted N-carboxyanhydride and click “glycosylation”. Macromol. Rapid Commun.31, 991–997 (2010). ArticleCASPubMedGoogle Scholar
  77. Kramer, J. R. & Deming, T. J. Preparation of multifunctional and multireactive polypeptides via methionine alkylation. Biomacromolecules13, 1719–1723 (2012). ArticleCASPubMedGoogle Scholar
  78. Kramer, J. R. & Deming, T. J. Reversible chemoselective tagging and functionalization of methionine containing peptides. Chem. Commun.49, 5144–5146 (2013). ArticleCASGoogle Scholar
  79. Kramer, J. R. et al. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences. ACS Cent. Sci.1, 83–88 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  80. Deming, T. J. Functional modification of thioether groups in peptides, polypeptides, and proteins. Bioconjug. Chem.28, 691–700 (2017). ArticleCASPubMedGoogle Scholar
  81. Kramer, J. R. & Deming, T. J. Glycopolypeptides with a redox-triggered helix-to-coil transition. J. Am. Chem. Soc.134, 4112–4115 (2012). ArticleCASPubMedGoogle Scholar
  82. Kramer, J. R. & Deming, T. J. Multimodal switching of conformation and solubility in homocysteine derived polypeptides. J. Am. Chem. Soc.136, 5547–5550 (2014). ArticleCASPubMedGoogle Scholar
  83. Zhou, M. N. et al. N-carboxyanhydride polymerization of glycopolypeptides that activate antigen-presenting cells through dectin-1 and dectin-2. Angew. Chem. Int. Ed.57, 3137–3142 (2018). ArticleCASGoogle Scholar
  84. Kramer, J. R. & Deming, T. J. Glycopolypeptides via living polymerization of glycosylated- l -lysine N-carboxyanhydrides. J. Am. Chem. Soc.132, 15068–15071 (2010). ArticleCASPubMedGoogle Scholar
  85. Kramer, J. R., Onoa, B., Bustamante, C. & Bertozzi, C. R. Chemically tunable mucin chimeras assembled on living cells. Proc. Natl Acad. Sci. USA112, 12574–12579 (2015). Demonstrates that helical conformations other than the α-helix can be obtained for glycosylated poly(amino acid)s, depending on the sugar conjugated and the nature of the linkage. ArticleCASPubMedGoogle Scholar
  86. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol.3, 238–250 (2005). ArticleCASPubMedGoogle Scholar
  87. Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov.11, 37–51 (2012). ArticleCASGoogle Scholar
  88. Stanzl, E. G., Trantow, B. M., Vargas, J. R. & Wender, P. A. Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc. Chem. Res.46, 2944–2954 (2013). ArticleCASPubMedGoogle Scholar
  89. Copolovici, D. M., Langel, K., Eriste, E. & Langel, Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano8, 1972–1994 (2014). ArticleCASPubMedGoogle Scholar
  90. Wyrsta, M. D., Cogen, A. L. & Deming, T. J. A parallel synthetic approach for the analysis of membrane interactive copolypeptides. J. Am. Chem. Soc.123, 12919–12920 (2001). ArticleCASPubMedGoogle Scholar
  91. Koller, D. & Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta1838, 2250–2259 (2014). ArticleCASPubMedGoogle Scholar
  92. Xiong, M. et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc. Natl Acad. Sci. USA112, 13155–13160 (2015). ArticleCASPubMedGoogle Scholar
  93. Xiong, M. et al. Selective killing of Helicobacter pylori with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides. Proc. Natl Acad. Sci. USA114, 12675–12680 (2017). ArticleCASPubMedGoogle Scholar
  94. Xiong, M. et al. Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition. Angew. Chem. Int. Ed.56, 10826–10829 (2017). ArticleCASGoogle Scholar
  95. Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol.1, 16162 (2016). ArticleCASPubMedGoogle Scholar
  96. Shirbin, S. J. et al. Architectural effects of star-shaped “structurally nanoengineered antimicrobial peptide polymers” (SNAPPs) on their biological activity. Adv. Healthc. Mater.7, 1800627 (2018). ArticleCASGoogle Scholar
  97. Engler, A. C. et al. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules12, 1666–1674 (2011). ArticleCASPubMedGoogle Scholar
  98. Ahmed, M. Peptides, polypeptides and peptide–polymer hybrids as nucleic acid carriers. Biomater. Sci.5, 2188–2211 (2017). ArticleCASPubMedGoogle Scholar
  99. Chen, J., Guan, X., Hu, Y., Tian, H. & Chen, X. in Polymeric Gene Delivery Systems (ed. Cheng, Y.) 85–112 (Springer, (2017).
  100. Miyata, K., Nishiyama, N. & Kataoka, K. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem. Soc. Rev.41, 2562–2574 (2012). ArticleCASPubMedGoogle Scholar
  101. Mutaf, O. F., Kishimura, A., Mochida, Y., Kim, A. & Kataoka, K. Induction of secondary structure through micellization of an oppositely charged pair of homochiral block- and homopolypeptides in an aqueous medium. Macromol. Rapid Commun.36, 1958–1964 (2015). ArticleCASPubMedGoogle Scholar
  102. Perry, S. L. et al. Chirality-selected phase behaviour in ionic polypeptide complexes. Nat. Commun.6, 6052 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  103. Gabrielson, N. P. et al. Reactive and bioactive cationic α-helical polypeptide template for nonviral gene delivery. Angew. Chem. Int. Ed.51, 1143–1147 (2012). ArticleCASGoogle Scholar
  104. Gabrielson, N. P., Lu, H., Yin, L., Kim, K. H. & Cheng, J. A cell-penetrating helical polymer for siRNA delivery to mammalian cells. Mol. Ther.20, 1599–1609 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  105. Wang, H.-X. et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl Acad. Sci. USA115, 4903–4908 (2018). ArticleCASPubMedGoogle Scholar
  106. Yin, L. et al. Non-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes. Adv. Mater.25, 3063–3070 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  107. He, H. et al. Suppression of hepatic inflammation via systemic siRNA delivery by membrane-disruptive and endosomolytic helical polypeptide hybrid nanoparticles. ACS Nano10, 1859–1870 (2016). ArticleCASPubMedGoogle Scholar
  108. Liu, Y. et al. Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles. Nanoscale10, 15339–15349 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  109. Yin, L. et al. Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: toward nonviral gene delivery. Angew. Chem. Int. Ed.52, 9182–9186 (2013). ArticleCASGoogle Scholar
  110. Zheng, N. et al. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery. Acta Biomater.58, 146–157 (2017). ArticleCASPubMedGoogle Scholar
  111. Li, F. et al. Engineering the aromaticity of cationic helical polypeptides toward “self-activated” DNA/siRNA delivery. ACS Appl. Mater. Interfaces9, 23586–23601 (2017). ArticleCASPubMedGoogle Scholar
  112. Dang, J. et al. Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism. Biomaterials223, 119463 (2019). ArticleCASPubMedGoogle Scholar
  113. Pelegri-O’Day, E. M., Lin, E.-W. & Maynard, H. D. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc.136, 14323–14332 (2014). ArticlePubMedCASGoogle Scholar
  114. Hou, Y. et al. Therapeutic protein PEPylation: the helix of nonfouling synthetic polypeptides minimizes antidrug antibody generation. ACS Cent. Sci.5, 229–236 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  115. Zhang, C. et al. From neutral to zwitterionic poly(α-amino acid) nonfouling surfaces: effects of helical conformation and anchoring orientation. Biomaterials178, 728–737 (2018). ArticleCASPubMedGoogle Scholar
  116. Cabral, H. & Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release190, 465–476 (2014). ArticleCASPubMedGoogle Scholar
  117. Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev.118, 6844–6892 (2018). ArticleCASPubMedGoogle Scholar
  118. Olsen, B. D. & Segalman, R. A. Self-assembly of rod–coil block copolymers. Mater. Sci. Eng. R. Rep.62, 37–66 (2008). ArticleCASGoogle Scholar
  119. Holowka, E. P., Pochan, D. J. & Deming, T. J. Charged polypeptide vesicles with controllable diameter. J. Am. Chem. Soc.127, 12423–12428 (2005). ArticleCASPubMedGoogle Scholar
  120. Holowka, E. P., Sun, V. Z., Kamei, D. T. & Deming, T. J. Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat. Mater.6, 52–57 (2007). ArticleCASPubMedGoogle Scholar
  121. Choe, U.-J. et al. Endocytosis and intracellular trafficking properties of transferrin-conjugated block copolypeptide vesicles. Biomacromolecules14, 1458–1464 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  122. Schatz, C., Louguet, S., Le Meins, J. & Lecommandoux, S. Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. Angew. Chem. Int. Ed.48, 2572–2575 (2009). ArticleCASGoogle Scholar
  123. Upadhyay, K. K. et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l -glutamate)-b-hyaluronan polymersomes. Biomaterials31, 2882–2892 (2010). ArticleCASPubMedGoogle Scholar
  124. Quadir, M. A., Martin, M. & Hammond, P. T. Clickable synthetic polypeptides–routes to new highly adaptive biomaterials. Chem. Mater.26, 461–476 (2014). ArticleCASGoogle Scholar
  125. Quadir, M. A. et al. Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications. Nanomedicine13, 1797–1808 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  126. Mochida, Y. et al. Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano8, 6724–6738 (2014). Demonstrates that the helical conformation can be induced upon loading of a drug, improving not only the mechanical properties of the formed micelles but also their pharmaceutical properties. ArticleCASPubMedGoogle Scholar
  127. Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol.6, 815–823 (2011). ArticleCASPubMedGoogle Scholar
  128. Peppas, N. A. Hydrogels in Medicine and Pharmacy: Properties and Applications Vol. 3 (CRC, 2019).
  129. Nowak, A. P. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature417, 424–428 (2002). Demonstrates that the helical conformation has a significant impact on the mechanical properties of synthetic hydrogels, paving the way to the application of these materials for tissue engineering and drug delivery. ArticleCASPubMedGoogle Scholar
  130. Breedveld, V., Nowak, A. P., Sato, J., Deming, T. J. & Pine, D. J. Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules37, 3943–3953 (2004). ArticleCASGoogle Scholar
  131. Deming, T. J. Polypeptide hydrogels via a unique assembly mechanism. Soft Matter1, 28–35 (2005). ArticleCASPubMedGoogle Scholar
  132. Zhang, S., Alvarez, D. J., Sofroniew, M. V. & Deming, T. J. Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties. Biomacromolecules16, 1331–1340 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  133. Wollenberg, A. L. et al. Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery. Biomaterials178, 527–545 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  134. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature532, 195–200 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  135. Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature561, 396–400 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  136. Schwartz, E., Koepf, M., Kitto, H. J., Nolte, R. J. M. & Rowan, A. E. Helical poly(isocyanides): past, present and future. Polym. Chem.2, 33–47 (2011). ArticleCASGoogle Scholar
  137. Akeroyd, N., Nolte, R. J. M. & Rowan, A. E. in Isocyanide Chemistry: Applications in Synthesis and Material Science (Wiley, 2012).
  138. Kollmar, C. & Hoffmann, R. Polyisocyanides: electronic or steric reasons for their presumed helical structure? J. Am. Chem. Soc.112, 8230–8238 (1990). ArticleCASGoogle Scholar
  139. Clericuzio, M., Alagona, G., Ghio, C. & Salvadori, P. Theoretical investigations on the structure of poly(iminomethylenes) with aliphatic side chains. Conformational studies and comparison with experimental spectroscopic data. J. Am. Chem. Soc.119, 1059–1071 (1997). ArticleCASGoogle Scholar
  140. Hase, Y. et al. Mechanism of helix induction in poly(4-carboxyphenyl isocyanide) with chiral amines and memory of the macromolecular helicity and its helical structures. J. Am. Chem. Soc.131, 10719–10732 (2009). ArticleCASPubMedGoogle Scholar
  141. Cornelissen, J. J. L. M. et al. β-Helical polymers from isocyanopeptides. Science293, 676–680 (2001). Describes the preparation of poly(isocyanide)s with stable helicity in aqueous conditions as a result of the H-bond network formed between the peptide side chains. ArticleCASPubMedGoogle Scholar
  142. Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature493, 651–655 (2013). ArticleCASPubMedGoogle Scholar
  143. Das, R. K., Gocheva, V., Hammink, R., Zouani, O. F. & Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater.15, 318–325 (2016). ArticleCASPubMedGoogle Scholar
  144. de Almeida, P. et al. Cytoskeletal stiffening in synthetic hydrogels. Nat. Commun.10, 609 (2019). Reports the use of β-helical poly(isocyanide)s to form strain-stiffening gels that mimic the mechanical properties of the extracellular matrix. ArticlePubMedPubMed CentralCASGoogle Scholar
  145. op ‘t Veld, R. C. et al. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials181, 392–401 (2018). ArticlePubMedCASGoogle Scholar
  146. Cornelissen, J. J. L. M., Fischer, M., Sommerdijk, N. A. J. M. & Nolte, R. J. M. Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science280, 1427–1430 (1998). ArticleCASPubMedGoogle Scholar
  147. Vriezema, D. M. et al. Vesicles and polymerized vesicles from thiophene-containing rod–coil block copolymers. Angew. Chem. Int. Ed.42, 772–776 (2003). Reports the use of poly(isocyanide)s to prepare block copolymers that can afford vesicles in both organic and aqueous conditions, as a result of the unique solubility of the poly(isocyanide) block and its helical conformation. ArticleCASGoogle Scholar
  148. van Oers, M. C. M., Rutjes, F. P. J. T. & van Hest, J. C. M. Cascade reactions in nanoreactors. Curr. Opin. Biotechnol.28, 10–16 (2014). ArticlePubMedCASGoogle Scholar
  149. Che, H. & van Hest, J. C. M. Adaptive polymersome nanoreactors. ChemNanoMat5, 1092–1109 (2019). ArticleCASGoogle Scholar
  150. Vriezema, D. M. et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. Int. Ed.46, 7378–7382 (2007). ArticleCASGoogle Scholar
  151. van Dongen, S. F. M., Nallani, M., Cornelissen, J. J. L. M., Nolte, R. J. M. & van Hest, J. C. M. A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chem. Eur. J.15, 1107–1114 (2009). ArticlePubMedCASGoogle Scholar
  152. Peters, R. J. R. W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed.53, 146–150 (2014). ArticleCASGoogle Scholar
  153. Peters, R. J. R. W., Louzao, I. & van Hest, J. C. M. From polymeric nanoreactors to artificial organelles. Chem. Sci.3, 335–342 (2012). ArticleCASGoogle Scholar
  154. Godoy-Gallardo, M., York-Duran, M. J. & Hosta-Rigau, L. Recent progress in micro/nanoreactors toward the creation of artificial organelles. Adv. Healthc. Mater.7, 1700917 (2018). ArticleCASGoogle Scholar
  155. van Dongen, S. F. M. et al. Cellular integration of an enzyme-loaded polymersome nanoreactor. Angew. Chem. Int. Ed.49, 7213–7216 (2010). ArticleGoogle Scholar
  156. Liu, J., Lam, J. W. Y. & Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev.109, 5799–5867 (2009). ArticleCASPubMedGoogle Scholar
  157. Masuda, T. & Zhang, A. in Handbook of Metathesis (eds Grubbs, R. H., Wenzel, A. G., O’Leary, D. J. & Khosravi, E.) 375–390 (Wiley, 2015).
  158. Simionescu, C. I. & Percec, V. Thermal cis–trans isomerization of cis–transoidal polyphenylacetylene. J. Polym. Sci. Polym. Chem. Ed.18, 147–155 (1980). ArticleCASGoogle Scholar
  159. Percec, V. & Rudick, J. G. Independent electrocyclization and oxidative chain cleavage along the backbone of cis-poly(phenylacetylene). Macromolecules38, 7241–7250 (2005). ArticleCASGoogle Scholar
  160. Masuda, T., Izumikawa, H., Misumi, Y. & Higashimura, T. Stereospecific polymerization of tert-butylacetylene by molybdenum catalysts. Effect of acid-catalyzed geometric isomerization. Macromolecules29, 1167–1171 (1996). ArticleCASGoogle Scholar
  161. Maeda, K. & Yashima, E. Helical polyacetylenes induced via noncovalent chiral interactions and their applications as chiral materials. Top. Curr. Chem.375, 72 (2017). ArticleCASGoogle Scholar
  162. Freire, F., Seco, J. M., Quiñoá, E. & Riguera, R. Chiral amplification and helical-sense tuning by mono- and divalent metals on dynamic helical polymers. Angew. Chem. Int. Ed.50, 11692–11696 (2011). ArticleCASGoogle Scholar
  163. Rodríguez, R., Quiñoá, E., Riguera, R. & Freire, F. Architecture of chiral poly(phenylacetylene)s: from compressed/highly dynamic to stretched/quasi-static helices. J. Am. Chem. Soc.138, 9620–9628 (2016). A complete description of the dynamic nature of poly(acetylene)s, explored through theoretical, experimental and computational methods. ArticlePubMedCASGoogle Scholar
  164. Cobos, K., Quiñoá, E., Riguera, R. & Freire, F. Chiral-to-chiral communication in polymers: a unique approach to control both helical sense and chirality at the periphery. J. Am. Chem. Soc.140, 12239–12246 (2018). ArticleCASPubMedGoogle Scholar
  165. Arias, S., Freire, F., Quiñoá, E. & Riguera, R. Nanospheres, nanotubes, toroids, and gels with controlled macroscopic chirality. Angew. Chem. Int. Ed.53, 13720–13724 (2014). ArticleCASGoogle Scholar
  166. Arias, S., Núñez-Martínez, M., Quiñoá, E., Riguera, R. & Freire, F. Simultaneous adjustment of size and helical sense of chiral nanospheres and nanotubes derived from an axially racemic poly(phenylacetylene). Small13, 1602398 (2017). ArticleCASGoogle Scholar
  167. Xu, A., Masuda, T. & Zhang, A. Stimuli-responsive polyacetylenes and dendronized poly(phenylacetylene)s. Polym. Rev.57, 138–158 (2017). ArticleCASGoogle Scholar
  168. Lv, Z., Chen, Z., Shao, K., Qing, G. & Sun, T. Stimuli-directed helical chirality inversion and bio-applications. Polymers8, 310 (2016). ArticlePubMed CentralCASGoogle Scholar
  169. Yashima, E., Nimura, T., Matsushima, T. & Okamoto, Y. Poly((4-dihydroxyborophenyl)acetylene) as a novel probe for chirality and structural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism. J. Am. Chem. Soc.118, 9800–9801 (1996). The demonstration that functional poly(acetylene)s can adapt their helical sense and pitch to biologically relevant metabolites, such as a glucose or steroids. ArticleCASGoogle Scholar
  170. Hall, D. G. in Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine 1–99 (Wiley, 2005).
  171. Nonokawa, R. & Yashima, E. Detection and amplification of a small enantiomeric imbalance in α-amino acids by a helical poly(phenylacetylene) with crown ether pendants. J. Am. Chem. Soc.125, 1278–1283 (2003). ArticleCASPubMedGoogle Scholar
  172. Li, B. S. et al. Tuning the chain helicity and organizational morphology of an l -valine-containing polyacetylene by pH change. Nano Lett.1, 323–328 (2001). ArticleCASGoogle Scholar
  173. Arias, S., Freire, F., Calderón, M. & Bergueiro, J. Unexpected chiro-thermoresponsive behavior of helical poly(phenylacetylene)s bearing elastin-based side chains. Angew. Chem. Int. Ed.56, 11420–11425 (2017). The demonstration that not only can thermoresponsive poly(acetylene)s be prepared but that the arrangement of the thermoresponsive moieties around a helical axis can impact the conformational changes upon heating, resulting in an unexpected increase in solubility. ArticleCASGoogle Scholar
  174. Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett.589, 2477–2486 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  175. Bhattacharyya, J., Bellucci, J. J. & Chilkoti, A. in Biomaterials from Nature for Advanced Devices and Therapies (eds Neves, N. M. & Reis, R. L.) 106–126 (Wiley, 2016).
  176. Freire, F., Quiñoá, E. & Riguera, R. Supramolecular assemblies from poly(phenylacetylene)s. Chem. Rev.116, 1242–1271 (2016). ArticleCASPubMedGoogle Scholar
  177. Zhao, B. & Deng, J. Emulsion polymerization of acetylenics for constructing optically active helical polymer nanoparticles. Polym. Rev.57, 119–137 (2017). ArticleCASGoogle Scholar
  178. Liang, J. & Deng, J. Chiral particles consisting of helical polylactide and helical substituted polyacetylene: preparation and synergistic effects in enantio-differentiating release. Macromolecules51, 4003–4011 (2018). ArticleCASGoogle Scholar
  179. Wang, H. et al. Chiral, thermal-responsive hydrogels containing helical hydrophilic polyacetylene: preparation and enantio-differentiating release ability. Polym. Chem.10, 1780–1786 (2019). ArticleCASGoogle Scholar
  180. Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed.46, 3693–3696 (2007). ArticleCASGoogle Scholar
  181. Lotz, B. in Synthesis, Structure and Properties of Poly(lactic acid) (eds Di Lorenzo, M. L. & Androsch, R.) 273–302 (Springer, 2018).
  182. Thomas, S. W., Joly, G. D. & Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev.107, 1339–1386 (2007). ArticleCASPubMedGoogle Scholar
  183. Zhu, C., Liu, L., Yang, Q., Lv, F. & Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev.112, 4687–4735 (2012). ArticleCASPubMedGoogle Scholar
  184. Liu, B. & Bazan, G. C. (eds) Conjugated Polyelectrolytes: Fundamentals and Applications (Wiley, 2013).
  185. Kane-Maguire, L. A. P. & Wallace, G. G. Chiral conducting polymers. Chem. Soc. Rev.39, 2545–2576 (2010). ArticleCASPubMedGoogle Scholar
  186. Ho, H.-A., Najari, A. & Leclerc, M. Optical detection of DNA and proteins with cationic polythiophenes. Acc. Chem. Res.41, 168–178 (2008). ArticleCASPubMedGoogle Scholar
  187. Ho, H. et al. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew. Chem. Int. Ed.41, 1548–1551 (2002). The demonstration that a helical conformation in conjugated polymers leads to unique spectroscopic responses that can be exploited to sense chemical mutations in DNA. ArticleCASGoogle Scholar
  188. Doré, K. et al. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J. Am. Chem. Soc.126, 4240–4244 (2004). ArticlePubMedCASGoogle Scholar
  189. Ho, H. A. et al. Direct molecular detection of nucleic acids by fluorescence signal amplification. J. Am. Chem. Soc.127, 12673–12676 (2005). ArticleCASPubMedGoogle Scholar
  190. Nilsson, K. P. R. & Inganäs, O. Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nat. Mater.2, 419–424 (2003). ArticleCASPubMedGoogle Scholar
  191. Najari, A. et al. Reagentless ultrasensitive specific DNA array detection based on responsive polymeric biochips. Anal. Chem.78, 7896–7899 (2006). ArticleCASPubMedGoogle Scholar
  192. Fukuhara, G. & Inoue, Y. Highly selective oligosaccharide sensing by a curdlan–polythiophene hybrid. J. Am. Chem. Soc.133, 768–770 (2011). ArticleCASPubMedGoogle Scholar
  193. Nilsson, K. P. R., Rydberg, J., Baltzer, L. & Inganäs, O. Twisting macromolecular chains: self-assembly of a chiral supermolecule from nonchiral polythiophene polyanions and random-coil synthetic peptides. Proc. Natl Acad. Sci. USA101, 11197–11202 (2004). ArticleCASPubMedGoogle Scholar
  194. Sigurdson, C. J. et al. Prion strain discrimination using luminescent conjugated polymers. Nat. Methods4, 1023–1030 (2007). ArticleCASPubMedGoogle Scholar
  195. Lim, E.-K. et al. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev.115, 327–394 (2015). ArticleCASPubMedGoogle Scholar
  196. Betts, J. G. et al. in Anatomy and Physiology Ch. 3.1 (OpenStax, 2013).

Acknowledgements

P.F.-T. thanks the University of Birmingham for the John Evans Fellowship. T.L. gratefully acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) through a studentship from the Centre for Doctoral Training in Physical Sciences for Health (EP/L016346/1).

Author information

Authors and Affiliations

  1. School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK Thomas Leigh & Paco Fernandez-Trillo
  1. Thomas Leigh
You can also search for this author in PubMed Google Scholar You can also search for this author in PubMed Google Scholar

Contributions

T.L. and P.F.-T. reviewed the literature, organized the Review and designed the figures. P.F.-T. wrote the manuscript, with both authors contributing to the final version of the Review.

Corresponding author

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks C. Scholz, E. Palermo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Secondary structure

The conformational arrangement (α-helix, β-pleated sheet etc.) of the backbone segments of a macromolecule, such as a polypeptide chain of a protein, without regard to the conformation of the side chains or the relationship to other segments.

The chirality of a helical, propeller or screw-shaped molecular entity.

The molecular conformation of a spiral nature, generated by regularly repeating rotations around the backbone bonds of a macromolecule.

The sense of rotation around the helical axis. Viewing from either end of a molecule downwards along the helical axis, the system has P helicity (or plus) if the rotation is clockwise (or right-handed) and M helicity (or minus) if the rotation is anticlockwise (or left-handed).

The translocation of a therapeutic agent to the site of activity or infection.

Bacteria that have a thin peptidoglycan layer and an outer lipid membrane.

Bacteria that have a thick peptidoglycan layer and no outer lipid membrane.

A process by which foreign genetic material, for example, DNA or RNA, is transferred to host cells for applications such as genetic research or gene therapy. Gene delivery can result in multiple effects, including gene knockdown, i.e. the deactivation or suppression of a gene, gene knockin, i.e. the one-for-one substitution of a gene into a host’s genome, or gene knockout, i.e. the total removal or permanent deactivation of a gene.

The deactivation or suppression of a gene.

Also known as (chain) identity period or (chain) conformational repeating unit. The distance or number of residues along the chain axis for a complete turn. This conformational unit is repeated along the chain through symmetry operations. In an α-helix formed from α-amino acids, there are 3.6 residues per ‘turn’, with a 5.4-angstroms turn.